
A Comparison of Dictionary Implementations

Mark P Neyer

April 10, 2009

1 Introduction

A common problem in computer science is the representation of a mapping between two sets. A mapping
f : A → B is a function taking as input a member a ∈ A, and returning b, an element of B. A mapping is also
sometimes referred to as a dictionary, because dictionaries map words to their definitions. Knuth [?] explores the
map / dictionary problem in Volume 3, Chapter 6 of his book The Art of Computer Programming. He calls it
the problem of ’searching,’ and presents several solutions.

This paper explores implementations of several different solutions to the map / dictionary problem: hash tables,
Red-Black Trees, AVL Trees, and Skip Lists. This paper is inspired by the author’s experience in industry, where
a dictionary structure was often needed, but the natural C# hash table-implemented dictionary was taking up too
much space in memory. The goal of this paper is to determine what data structure gives the best performance, in
terms of both memory and processing time. AVL and Red-Black Trees were chosen because Pfaff [?] has shown
that they are the ideal balanced trees to use. Pfaff did not compare hash tables, however. Also considered for
this project were Splay Trees [?].

2 Background

2.1 The Dictionary Problem

A dictionary is a mapping between two sets of items, K, and V . It must support the following operations:

1. Insert an item v for a given key k. If key k already exists in the dictionary, its item is updated to be v.

2. Retrieve a value v for a given key k.

3. Remove a given k and its value from the Dictionary.

2.2 AVL Trees

The AVL Tree was invented by G.M. Adel’son-Vel’skĭı and E. M. Landis, two Soviet Mathematicians, in 1962
[?]. It is a self-balancing binary search tree data structure. Each node has a balance factor, which is the height
of its right subtree minus the height of its left subtree. A node with a balance factor of -1,0, or 1 is considered
’balanced.’ Nodes with different balance factors are considered ’unbalanced’, and after different operations on the
tree, must be rebalanced.

1. Insert Inserting a value into an AVL tree often requires a tree search for the appropriate location. The
tree must often be re-balanced after insertion. The re-balancing algorithm ’rotates’ branches of the tree to
ensure that the balance factors are kept in the range [-1,1]. Both the re-balancing algorithm and the binary
search take O(log n) time.

1



2. Retrieve Retrieving a key from an AVL tree is performed with a tree search. This takes O(log n) time.

3. Remove Just like an insertion, a removal from an AVL tree requires the tree to be re-balanced. This
operation also takes O(log n) time.

2.3 Red-Black Trees

The Red-Black Tree was invented by Rudolf Bayer in 1972 [?]. He originally called them ”Symmetric Binary
B-Trees”, but they were renamed ”Red-Black Trees” by Leonidas J. Guibas and Robert Sedgewick in 1978 [?].
Red-Black trees have nodes with different ’colors,’ which are used to keep the tree balanced. The colors of the
nodes follow the following rules:

1. Each node has two children. Each child is either red or black.

2. The root of the tree is black

3. Every leaf node is colored black.

4. Every red node has both of its children colored black.

5. Each path from root to leaf has the same number of black nodes.

Like an AVL tree, the Red-Black tree must be balanced after insertions and removals. The Red-Black tree does
not need to be updated as frequently, however. The decreased frequency of updates comes at a price: maintenance
of a Red-Black tree is more complicated than the maintenance of the AVL tree.

1. Insert Like an AVL Tree, inserting a value into a Red-Black tree is done with a binary search, followed
by a possible re-balancing. Like the AVL tree, the re-balancing algorithm for the Red-Black tree ’rotates’
branches of the tree to ensure that some constraints are met. The difference is that the Red-Black Tree’s
re-balancing algorithm is more complicated. The search and re-balancing both run in O(log n) time.

2. Retrieve Retrieving a key from a Red-Black tree is performed with a binary search. This takes O(log n)
time.

3. Remove Just like an insertion, a removal from a Red-Black tree requires the tree to be re-balanced. The
search for the key to be removed, along with the re-balancing, takes O(log n) time.

2.4 Skip Lists

Skip Lists are yet another structure designed to store dictionaries. The skip list was invented by William Pugh
in 1991 [?]. A skip list consists of parallel sorted linked lists. The ’bottom’ list contains all of the elements. The
next list up is build randomly: For each element, a coin is flipped, and if the element passes the coin flip, it is
inserted into the next level. The next list up contains the elements which passed two coin flips, and so forth. The
skip list requires little maintenance.

1. Insert Insertion into a skip list is done by searching the list for the appropriate location, and then adding
the element to the linked list. There is no re-balancing that must be done, but because a search must be
performed, the running time of insertions is the same as the running time for searches : O(log n).

2. Retrieve Retrieving a key from a Red-Black tree is performed with a special search, which first traverses
the highest list, until an element higher than the search target is found. The search goes back one element
of the highest list, then goes down one level and continues. This process goes on until the bottom list is
found, and the element is either located or it is found that the element is not part of the list. how long does
this search take? Pugh showed that it takes, on average, O(log n) time.

2



3. Remove Removal of an item from the skip list requires no maintenance, but it again requires a search.
This means that the removal takes O(log n) time.

2.5 Hash tables

Hash tables were first suggested by H. P. Luhn, in an internal IBM memo in 1953 [?]. Hash tables use a hash
function h : K → V to compute the location of a given value v in a table. The function is called a ’hash function’
because it ’mixes’ the data of its input, so that the output for similar inputs appears totally unrelated. When two
members of K, say k1 and k2 have the same hash value, i.e. h(k1) = h(k2), then we say there is a hash collision,
and this collision must be resolved.

There are two main methods of collision resolution. Under the chaining method, each entry in the hash table
contains a linked list of ’buckets’ of keys with the same hash value. When a lookup is performed in the hash
table, first the appropriate bucket is found, and then the bucket is searched for the correct key. If there are M
lists of buckets in the hash table, and there are N total entries, we say that the hash table has a load factor of
N/M . When the load factor gets too high, it makes sense to create a new hash table with more bucket lists, to
reduce the time of each operation.

The second method of collision resolution is called ’open addressing’. Under open addressing, each hash function
hashes to not one but a series of addresses. If an entry is performed and the first address in the hash table is
occupied, the next is probed. If it is occupied, the next is probed, and so on, until an empty address is found.
Hash tables with open addressing therefore have a total maximum size M . Once the the load factor (N/M)
exceeds a certain threshold, the table must be recopied to a larger table.

1. Insert Inserting a value into a Hash table takes, on the average case, O(1) time. The hash function is
computed, the bucked is chosen from the hash table, and then item is inserted. In the worst case scenario,
all of the elements will have hashed to the same value, which means either the entire bucket list must be
traversed or, in the case of open addressing, the entire table must be probed until an empty spot is found.
Therefore, in the worst case, insertion takes O(n) time.

2. Retrieve Retrieving a key from a Red-Black tree is performed by computing the hash function to choose a
bucket or entry, and then comparing entries until a match is found. On average, this operation takes O(1)
time. However, like insertions, in the worst case, it can take O(n) time.

3. Remove Just like an insertion, a removal from a hash table is O(1) in the average case, but O(n) in the
worst case.

3 Experiment

The Microsoft .NET platform was chosen for this experiment because it is of interest to the author’s experience
in industry, and due to the availability of a precise memory measurement debugging library, namely sos.dll.
The hash table chosen was the System.Collections.hash table class, and the AVL tree chosen was based upon
an implementation found at http://www.vcskicks.com. The Red-Black tree was based upon an implementation
found at http://www.devx.com/DevX/Article/36196, and the Skip List used was based upon an implementation
found at http://www.codeproject.com/KB/recipes/skiplist1.aspx. The tests were performed in rounds, with the
dictionary size in each round varying from 5 entries to 5120 entries. For each round a dictionary was created and
then populated with random elements. The time it took to create the dictionary, and memory taken up were then
measured. Next, the dictionary was queried randomly, 100 times for each entries in the dictionary. The time it
took to perform these queries was recorded.

Measurement of the size of the hash table was made difficult by the fact that the .NET runtime uses hash tables
internally, and the measuring tools did not filter these tables out. Therefore, when memory taken up by instances
of the Hashtable or the Hashtable+bucket[] class was taken, a baseline for the number of existing hash tables and

3



their size was computed based upon memory used when no instance of the Hashtable class were created for the
experiment. This baseline memory usage was then subtracted from all future measurements of memory usage.
The experimental data is presented both as it was gathered, as well as in a processed form to account for the
existing hash tables.

4 Results

Table ?? compares the memory consumption of the different implementations of dictionaries. For all but the
most trivial of dictionaries, the hash table outperforms AVL and Red-Black Trees, but loses to the Skip List.

Table ?? compares the time it took to create thedifferent dictionary implementations. The AVL tree is the clear
loser, while Red-Black Trees, Hash tables, and Skip Lists all appear to take roughly the same amount of time.

Table ?? compares lookup time in the different structures. Once again, Hash Tables are the superior choice in
terms of fast lookup time, with skip lists coming in second and red-black trees a close third. The clear loser is,
again, the AVL tree.

5 Conclusion

It is very clear now that, for random access dictionaries, hash tables are superior to both trees and skip lists. The
primary advantage of the later group of data structures is that an they allow for sorted access to data. A hash
table’s speed, on the other hand, depends upon its ability to store the elements ’randomly’, i.e. with no relation
to the relative values of the keys.

Among trees, it is clear that a Red-Black tree is superior to an AVL tree. The Red-Black tree allows itself to be
more ’unbalanced’ than an AVL tree, and, as a result, does not need to be re-balanced as frequently. A Skip list,
however, appears to be a better choice than either of these two trees. Its memory footprint is smaller than any of
the other structures, and in construction time it is comparable to a Hash table. For random queries, it performs
about as well as the Red-Black tree.

6 Bibliogrpahy

References

[1] G.M. Adel’son-Vel’skĭı and E. M. Landis. An algorithm for the organization of information. Soviet Mathematics
Doklady, 3:1259–1262, 1926.

[2] R. Bayer. Symmetric binary b-trees: Data structures and maintenance algorithms. Acta Informat., 1:290–306,
1972.

[3] L. J. Guibas and R Sedgewick. A dichromatic framework for balanced trees. IEEE Symposium on Foundations
of Computer Science, pages 8–21, 1978.

[4] Donald Knuth. The Art of Computer Programming, volume 3. Addison-Wesley Publishing Co., Philippines,
1973.

[5] Ben Pfaff. Performance analysis of BSTs in system software. In SIGMETRICS ’04/Performance ’04: Proceed-
ings of the joint international conference on Measurement and modeling of computer systems, pages 410–411,
New York, NY, USA, 2004. ACM.

[6] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM, 33(6):668–676, 1990.

[7] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652–686,
1985.

7 Data

4



Number of Entries Hash Table AVL Tree Red-Black Tree Skip List
5 330 176 224 160
10 344 456 544 360
20 776 876 1024 660
40 1784 1716 1984 1260
80 4088 3396 3904 2460
160 3066 6756 7744 4860
320 9330 13476 15424 9660
640 19424 26916 30784 19260
1280 41168 53796 61504 38460
2560 86264 107556 122944 76860
5120 179504 215076 245824 153660

Table 1: Dictionary Memory Size In Bytes

Number of Entries Hash Table AVL Tree Red-Black Tree Skip-list
5 2 30 24 4
10 1 4 1 1
20 1 2 1 1
40 1 2 1 2
80 1 3 2 1
160 2 6 2 1
320 2 18 33 2
640 2 62 4 3
1280 2 238 9 4
2560 4 975 14 7
5120 6 3704 38 16

Table 2: Dictionary Creation Time In Milliseconds

5



Number of Entries Hash Table AVL Tree Red-Black Tree Skip List
5 0 1 1 1
10 0 1 1 0
20 0 2 2 2
40 1 5 4 4
80 1 13 9 9
160 3 28 19 19
320 6 64 41 41
640 10 143 92 93
1280 21 310 202 195
2560 44 679 489 406
5120 91 1517 1002 914

Table 3: Dictionary Lookup Speed In Milliseconds

Size of Number of Number of Size of Average Size of Corrected Size of Total Size (Bytes)
Table Tables Bucket Arrays Bucket Arrays Bucket Arrays Bucket Arrays

0 56 64 18264 285.38 285 341
5 54 55 15096 274.47 274 330
10 56 65 18552 285.42 288 344
20 54 56 15816 282.43 720 776
40 54 56 16824 300.43 1728 1784
80 54 56 19128 341.57 4032 4088
160 54 55 17832 324.22 3010 3066
320 54 55 24096 438.11 9274 9330
640 54 56 34464 615.43 19368 19424
1280 54 56 56208 1003.71 41112 41168
2560 54 56 101304 1809 86208 86264
5120 54 56 194544 3474 179448 179504

Table 4: Hash Tables: Memory Size in Bytes

6



7


